189 research outputs found

    Cloning and expression of Geotrichum candidum lipase II gene in yeast. Probing of the enzyme active site by site-directed mutagenesis.

    Get PDF
    The three-dimensional structure of lipase II of Geotrichum candidum strain ATCC34614 (GCL II) has provided insights with respect to the nature of the catalytic machinery of lipases. To support these structural observations, we have carried out an analysis of GCL II by mutagenesis. The gene encoding lipase II of Geotrichum candidum strain ATCC34614 (GCL II) was amplified using the polymerase chain reaction, cloned, and sequenced. The intronless lipase gene was expressed and secreted from Saccharomyces cerevisiae at approximately 5 mg/liter of culture. Recombinant GCL II was purified by immunoaffinity chromatography and characterized using a combination of substrates and independent analytical methods. The recombinant enzyme and the enzyme isolated from its natural source have comparable specific activities against triolein of about 1000 mumol of oleic acid released/min/mg of protein. The putative catalytic triad Ser217-His463-Glu354 was probed by site-directed mutagenesis. The substitution of Ser217 by either Cys or Thr and of His463 by Ala led to a complete elimination of the activity against both triolein and tributyrin. Substitution of Glu354 by either Ser, Ala or Gln renders the enzyme inactive and also perturbs the enzyme stability. However, the enzyme with the conservative replacement Glu354 Asp is stable and displays only a small decrease of triolein activity but a 10-fold decrease in activity against tributyrin. There was no appreciable difference in esterase activity between the native, recombinant wild type, and Glu354 Asp mutant. These results confirm that the triad formed by Ser217-Glu354-His463 is essential for catalytic activity. They also show that the active site of GCL II is more tolerant to a conservative change of the carboxylic side chain within the triad than are other hydrolases with similar catalytic triads

    Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing.

    Get PDF
    The precursor of the cysteine protease papain has been expressed and secreted as propapain from insect cells infected with a recombinant baculovirus expressing a synthetic gene coding for prepropapain. This 39-kDa secreted propapain zymogen molecule is glycosylated and can be processed in vitro into an enzymatically active authentic papain molecule of 24.5 kDa (Vernet, T., Tessier, D.C., Richardson, C., Laliberte, F., Khouri, H. E., Bell, A. W., Storer, A. C., and Thomas, D. Y. (1990) J. Biol. Chem. 265, 16661-16666). Recombinant propapain was stabilized with Hg2+ and purified to homogeneity using affinity chromatography, gel filtration, and ion-exchange chromatographic procedures. The maximum rate of processing in vitro was achieved at approximately pH 4.0, at a temperature of 65 degrees C and under reducing conditions. Precursor processing is inhibited by a variety of reversible and irreversible cysteine protease inhibitors but not by specific inhibitors of serine, metallo or acid proteases. Replacement by site-directed mutagenesis of the active site cysteine with a serine at position 25 also prevents processing. The inhibitor 125I-N-(2S,3S)-3-trans-hydroxycarbonyloxiran-2-carbonyl-L-tyrosine benzyl ester covalently labeled the wild type papain precursor, but not the C25S mutant, indicating that the active site is accessible to the inhibitor and is in a native conformation within the precursor. Based on biochemical and kinetic analyses of the activation and processing of propapain we have shown that the papain precursor is capable of autoproteolytic cleavage (intramolecular). Once free papain is released processing can then occur in trans (intermolecular)

    Secretion of functional papain precursor from insect cells. Requirement for N-glycosylation of the pro-region.

    Get PDF
    The synthetic gene coding for the precursor of the cysteine protease papain (EC 3.4.22.2) has been expressed using the baculovirus/insect cell system. The prepropapain gene was cloned into the transfer vector IpDC125 behind the polyhedrin promoter. The recombinant construct was then incorporated by homologous recombination into the Autographa californiaca nuclear polyhedrosis virus genome. The host Spodoptera frugiperda Sf9 cells infected with the recombinant baculovirus secrete an enzymatically inactive N-glycosylated papain precursor. This zymogen could be activated in vitro to yield about 400 nmol of active papain per liter of culture. The recombinant active mature papain was enzymatically indistinguishable from natural papain but the precursor was not processed to the same amino acid residue. The insect cells also accumulated prepropapain and glycosylated propapain intracellularly. This accumulation was an indication that there are rate-limiting steps in the secretion of proteins from insect cells in this expression system. Characterization of mutants of the precursor has shown that entry into the secretory pathway and addition of carbohydrate are prerequisite conditions for the production and secretion of functional propapain

    Report of the study group on a superconducting proton linac as a PS Injector

    Get PDF
    A proposal was made at the end of 1996 to use the large inventory of RF hardware available after the decommissioning of LEP-2 for the construction of a 2 GeV Superconducting Proton Linac (SPL) to inject directly into the PS [1.1]. The brightness of the beam in the PS at low energy would double, helping the injector complex to satisfy the requirements of the LHC and benefiting the planned proton physics programme. Additional users could also be accommodated thanks to the capability of the SPL to operate at a much larger duty factor than that required for high-energy physics. Consequently, a small study group has been set up to analyse the major technical aspects of the SPL design as well as the processes of injection and capture in the PS. This report summarises the work done so far, and provides some information about the other possible uses of the SPL beam. The feasibility of such a cascade of accelerators is confirmed, although an in-depth design study is still required before the realistic performance and detailed design of that facility can be announced

    Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    Get PDF
    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease

    Exciton-phonon coupling in InP quantum dots with ZnS and (Zn, Cd) Se shells

    Get PDF
    InP-based colloidal quantum dots are promising for optoelectronic devices such as light-emitting diodes and lasers. Understanding and optimizing their emission process is of scientific interest and essential for large-scale applications. Here we present a study of the exciton recombination dynamics in InP QDs with various shells: ZnS, ZnSe, and (Zn,Cd)Se with different amounts of Cd (5, 9, 12%). Phonon energies extracted from Raman spectroscopy measurements at cryogenic temperatures (4-5 K) are compared with exciton emission peaks observed in fluorescence line narrowing spectra. This allowed us to determine the position of both the bright F = +/- 1 state and the lowest dark F = +/- 2 state. We could identify the phonon modes involved in the radiative recombination of the dark state and found that acoustic and optical phonons of both the core and the shell are involved in this process. The Cd content in the shell increases electron wave-function delocalization, and thereby enhances the exciton-phonon coupling through the Frohlich interaction

    Spliced Leader Trapping Reveals Widespread Alternative Splicing Patterns in the Highly Dynamic Transcriptome of Trypanosoma brucei

    Get PDF
    Trans-splicing of leader sequences onto the 5′ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5′splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT). The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5′ splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/
    corecore